Acta Cryst. (1957). 10, 664

Die Kristallstruktur von Li₂CO₃

VON J. ZEMANN

Mineralogisch-Kristallographisches Institut der Universität, Göttingen, Deutschland

(Eingegangen am 10. Mai 1957)

 Li_2CO_3 is monoclinic with a = 8.39, b = 5.00, c = 6.21 Å, $\beta = 114.5^\circ$; space group C2/c; cell content $Li_8(CO_3)_4$. The structure has been solved by Fourier methods parallel to [001]; the z parameters were found by 'trial and error'. The CO_3 groups are almost perpendicular to [001]; they are linked by Li⁺ in tetrahedral coordination.

Einleitung

Das Lithiumkarbonat, Li_2CO_3 , unterscheidet sich physikalisch-chemisch in mancherlei Hinsicht vom Natriumkarbonat. So sind vom Natriumkarbonat eine Reihe von Hydraten bekannt (Na₂CO₃. 10H₂O,Na₂CO₃. 7H₂O, Na₂CO₃. H₂O), während Li₂CO₃ nur wasserfrei kristallisiert. Die molare Löslichkeit von Li₂CO₃ in Wasser ist etwa um eine Zehnerpotenz kleiner als von Na₂CO₃ und nimmt mit steigender Temperatur ab. Für LiNO₃ und NaNO₃, welche beide im Calcit-Typ kristallisieren, liegt hingegen die molare Löslichkeit in Wasser in derselben Grössenordnung. Die geringe Löslichkeit von Li₂CO₃ ist offenbar durch ein energetisch besonders günstiges Gitter verursacht.

Strukturell ist bisher über Lithiumkarbonat nichts bekannt. Nach Mallard (1892) kristallisiert es monoklin mit

$$a:1:c = 1,672:1:1,244, \ \beta = 65^{\circ} 35'.$$

Er beschrieb Kriställchen, welche nach [001] gestreckt und nach (100) verzwillingt sind. Die Hauptbrechungsindices bestimmte er zu

$$\alpha = 1,572, \ \beta = 1,567, \ \gamma = 1,428;$$

 n_{γ} schwingt (zumindest beinahe) parallel [001], die Achsenebene ist parallel (100).

Experimentelles

Durch Eindunsten einer wässrigen Lösung von Li₂CO₃ wurde feines Kristallmehl erhalten, aus welchem als grösstes Individium ein Nädelchen von etwa $0,25 \times 0,03 \times 0,01$ mm. zu Einkristallaufnahmen um die Achse [001] verwendet wurde. Es wurden Drehkristallaufnahmen sowie Weissenbergaufnahmen vom Äquator und den beiden ersten Schichtlinien mit Cu-Strahlung (Ni-Folie) gemacht. Dabei erwies sich das Individium als Zwilling nach (100), was jedoch nicht besonders störte. Vom Äquator wurden mittels der 'multiple exposure'-Methode und Schätzen mit Hilfe einer Vergleichsskala quantitative hk0-Intensitäten gewonnen. Lorentz-Polarisationsfaktor und sin θ/λ -Werte wurden graphisch ermittelt, Absorption brauchte nicht berücksichtigt zu werden. Die Weissenberg-Daten wurden durch eine Pulveraufnahme (Cr-Strahlung, V-Folie) ergänzt.

Gitterkonstanten und Raumgruppe

Aus den Einkristall- und Pulveraufnahmen wurden folgende Gitterkonstanten ermittelt:

$$a = 8,39 \pm 0,02, \quad b = 5,00 \pm 0,01, \quad c = 6,21 \pm 0,02 \text{ Å}, \\ \beta = 114\frac{1}{2} \pm \frac{1}{2}^{\circ}.$$

Daraus ist das Achsenverhältnis

$$a:1:c = 1,68_0:1:1,24_2$$

in guter Übereinstimmung mit Mallard's morphologischen Werten. Mit einem Zellinhalt $\text{Li}_8(\text{CO}_3)_4$ berechnet sich die Dichte zu d (röntg.) = $2,07\pm0,02$ g.cm.⁻³; Mallard (1892) fand mittels der Schwebemethode d(exp.) = 2.094 g.cm.⁻³.

Die systematischen Auslöschungen (hkl vorhanden nur mit h+k=2n, h0l nur mit h=2n und l=2n) führen auf die charakteristischen Raumgruppen $C2/c-C_{2h}^6$ oder $Cc-C_s^4$. Da in C2/c eine befriedigende Struktur gefunden werden konnte, ist sie als die wahre Raumgruppe anzusehen. Über mögliche Abweichungen von dieser Symmetrie wird weiter unten zu berichten sein.

Gang der Strukturbestimmung

In C2/c müssen für einen Zellinhalt $\text{Li}_8(\text{CO}_3)_4$ die Kohlenstoffatome und vier der Sauerstoffe auf der Punktlage $4(e): 0, y, \frac{1}{4}$, usw. sitzen; die anderen vierzähligen Punktlagen 4(a) bis 4(d) besitzen nämlich Punktsymmetrie I und scheiden somit aus kristallchemischen Gründen aus. Da die Dimensionen der CO_3 -Gruppe ungefähr bekannt sind und aus den optischen Eigenschaften folgt, dass sie (zumindest sehr angenähert) mit ihren Ebenen senkrecht [001] stehen müssen, so reduziert sich für die grundsätzliche Klärung der Struktur die Zahl der freien Parameter beträchtlich.

Mit dieser Voraussetzung konnte die Pattersonprojektion parallel [001] für die CO₃-Gruppen leicht gelöst werden. Die Fourierprojektion ergab auch klar die Li-Positionen, worauf mit (F_o-F_c) Synthesen verfeinert wurde. Die z-Parameter wurden aus geometrischen Überlegungen und 'trial and error' aus der Pulveraufnahme gewonnen.

In Tabelle 1 ist für die hk0-Daten der Vergleich

Tabelle 1	Veraleich	von F.	und F.	fiir	die	hk0-Re	flexe
Labene I.	rergieion	UUR I A	with I'r	1001	auc	10100-200	100000

hk0	$ F_o $	F_{c}	hk0	$ F_o $	F_{c}
200	3,79	4,19	310	5,04	5,01
400	< 0,54	0,23	330	2,54	2,86
600	7.30	7,60	350	1,18	1,25
800	2,99	3,10	370	3,10	3,02
110	6,58	7,25	040	< 0,72	0,26
310	6,04	-5,47	240	< 0,73*	-0,17
510	2,30	-2,51	440	< 0,74	0,66
710	4,41	4,98	640	< 0,60	-0,01
910	< 0,51	-0,69			
			150	2,67	-2,48
020	7,84	8,23	350	< 0,66	0,33
220	5,02	-4,97	550	1,18	-0,87
420	3,99	-3,74			
620	2,24	1,70	060	1,63	-1,71
820	< 0,35	0,12	260	1,24	0,93

* Der Reflex 240 wurde auf den Weissenberg-Aufnahmen sehr schwach beobachtet; es handelt sich jedoch wahrscheinlich um eine Umweganregung durch den 110-Reflex.

zwischen F_o und F_c gegeben. Zur Berechnung wurden für C und O die Atomfaktoren von Berghuis *et al.* (1955) benutzt, jedoch mit der Modifizierung, dass dem Kohlenstoff die formale Ladung 1+ und den Sauerstoffen 1- gegeben wurde; die Streukurven beginnen also für sin $\theta/\lambda = 0$ mit 5,00 bzw. 9,00 und

Tabelle	2 .	Vergleich	zwischen	Berechnung	und	Beob-
		achtung	für Pulve	raufnahme		

(Cr-Strahlung, V-Folie)

	Bered	Berechnet		Beobachtet	
hkl	$\overline{\theta}$	I	θ	I	
110	15,9	27,0	15,9	30	
20 <u>0</u>	17,5	3,2)	17.5	5	
111	17,5	0,9 ∫	11,0	Ū	
111	22,1	9,6	22,1	7	
$20\overline{2}$	23,1	30,4	23,0	30	
002	23,9	32,5	23,9	35	
$11\overline{2}$	25,8	9,5	25,7	10	
020	27,3	4,4	27,3	5	
311	28,0	14,4	23,0	15	
021	30,1	5,7	30,1	5	
310	30,3	3,0	30,3	5	
$31\overline{2}$	31,2	0,1			
112	32,6	0,0	20 7	1	
22 1	32,6	1,5 👔	32,1	I	
220	33,2	2,2	33,3	2	
$40\overline{2}$	34,6	0,5		<u></u>	
202	36,6	0,5			
400	36,9	0,0			
$22\overline{2}$	37,1	0,5			
113	37,4	0,0			
311	37,6	5,1)	277	10	
022	37,8	0,9 }	51,1	10	
221	38,7	0,0			
31 3	39,1	1,3	39,1	2	
130	44,7	1,2	44,9	2	

$\exp\left[-1,6 (\sin \theta/\lambda)^2\right]$

und beziehen sich auf eine Formeleinheit. Der Zuverlässigkeitsindex berechnet sich zu $R = 0.08_1$; berücksichtigt man auch die nicht beobachteten Reflexe (Hamilton, 1955), so wird $R' = 0.10_4$. Tabelle 2 gibt den Vergleich zwischen Beobachtung (Intensitäten geschätzt) und Berechnung für die Pulveraufnahme. Bei Glanzwinkeln $\theta > 45^{\circ}$ wird wegen der dichten Scharung der Linien die Indizierung unsicher; es wurde deshalb bei diesem Glanzwinkel abgebrochen. Beide Tabellen beziehen sich auf folgendes Modell:

Raumgruppe: $C2/c-C_{2h}^6$

8 Li	auf $8(f)$:	x = 0,203, y =	$0,450, \ z = 0,840$,
4 C	auf $4(e)$:	$x = 0, \qquad y =$	$0,057,\; z=rac{1}{4}$,
4 O(1)	auf $4(e)$:	$x = 0, \qquad y =$	$0,313, \ z = \frac{1}{4},$
8 O(2)	auf $8(f)$:	x = 0,145, y = -	-0,067, z = 0,320.

Der mittlere Fehler in den x- und y-Parametern wird zu $\pm 0,005$, der in den z-Parametern zu $\pm 0,010$ geschätzt.

Beschreibung der Struktur

Fig. 1 zeigt die Projektion der Elektronendichte parallel [001] und die Projektion der Atomschwerpunkte in derselben Richtung. In Tabelle 3 sind die

Tabelle 3. Interatomare Abstände

CO3-0	Gruppe	LiO_4 -Tetraeder		
C-O(1)	1,28 Å	$(1 \times)$	Li-O(1)	1,96 Å
C = O(2)	1,27	(2×)	$L_{1-O(2)}$ Li-O(2)'	1,97
O(1)-O(2) O(2) O(2)	2.20	$(2 \times)$	Li–O(2)''	2,00
0(2) - 0(2)	2-2	(1 \)	O(1)-O(2)	3,29
			O(1)-O(2)' O(1)-O(2)''	3,32 3 24
			O(2) - O(2)'	2,86*
			O(2)-O(2)'' O(2)'-O(2)''	$3,37 \\ 3,18$

* Gemeinsame Kante von zwei LiO₄-Tetraedern.

interatomaren Abstände gegeben; sie liegen durchwegs in den üblichen Grössenordnungen. Die CO_3 -Gruppen bilden innerhalb der Fehlergrenzen regelmässige Dreiecke mit C im Schwerpunkt; ihre Ebene liegt beinahe senkrecht [001]. Die Lithiumionen sind verzerrt tetraedrisch von vier Sauerstoffen umgeben. Von diesen verknüpft einer, O(1), zwei Tetraeder über eine Ecke, während die anderen, O(2), drei Tetraedern angehören. Jeweils zwei LiO₄-Tetraeder haben eine Kante gemeinsam.

Bei rein ionogener Auffassung der Bindung sind die Pauling'schen Regeln recht gut erfüllt. Den zwei negativen Ladungen von O(1) stehen dann 1,83 Ladungsanteile von positiven Gitterbestandteilen ge-

Fig. 1. (a) Absolute Fourierprojektion parallel [001]. Schichtlinien in den Höhen 5, 10 und 15 e. $Å^{-2}$. (b) Projektion der Atomlagen parallel [001].

Literatur

ler ng Berghuis, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPstra, B. O., MACGILLAVRY, C. H. & VEENENDAAL, ng A. L. (1955). Acta Cryst. 8, 478.

HAMILTON, W. C. (1955). Acta Cryst. 8, 185.

- Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935), Bd. 2, S. 571. Berlin: Bornträger.
- MALLARD, E. (1892). Bull. Soc. franç. Minér. 15, 21.

genüber; für O(2) beträgt der Anteil an positiven Ladungen 2,08. Der pseudorhombische Charakter der Struktur macht die Neigung zur Zwillingsbildung nach (100) verständlich. Die gute Übereinstimmung zwischen beobachteten und berechneten Intensitäten belegt, dass die Symmetrie der Atomanordnung innerhalb der Fehlergrenzen der Parameter tatsächlich der Raumgruppe C2/c entspricht.